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Based on the increasing importance of metal foams in industrial applications, numerical com­
putations are needed for an effective simulation of the material behaviour in general boundary 
value problems, for example energy absorbtion or elasto-plastic deformation problems. 
Proceeding from either real or virtual averaging processes, the macroscopic description of gas­
saturated or empty metal foams results in the continuum mechanical framework of the Theory 
of Porous Media (TPM). The porous solid matrix is described, in the constitutive range, by 
an elasto-plasticity law proceeding from a single-surface yield function to bound the elastic 
domain. 

1. Theory of Porous Media 

The material behaviour of immiscible constituents can be described by the Theory of Porous 
Media (TPM) [1]. This theory is defined as the theory of mixtures extended by the concept 
of volume fractions. Averaging the real structure toward a homogenised model, individual 
microscopic reactions depending on different pore sizes and shapes as well as on different cell 
wall reactions could be treated in a macroscopic way. 
The kinematics of porous media depend on the assumption that particles xa of the constituent 
<pa (a = S: solid skeleton, a = F: pore-gas) of the medium under consideration occupy the 
same volume element dv which is defined as the sum of the partial volume elements dva of all 
constituents (superimposed continua). 
Material incompressibility of any constituent means incompressibility in the materials micro 
ranges and does not imply macroscopic incompressibility, i.e. even if the real density paR 
(material density) of a constituent r.pa is constant, the partial densities pa can still change through 
changes in the volume fractions na. These relations are given by the definition of the volume 
fractions, the saturation condition and the partial density formulation: 

a dva 
n =-, 

dv 

Based on the principles of mixture theories, each constituent follows its own motion Xa• where 
each particle xa is assigned to its own reference position Xa at timet= t 0 • 
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The deformation gradients and their inverses are represented via 

8x 
F 0 = BXa = Grad0 X, 

-1 8Xa 
F 0 = Bx = gradX0 , 

where Grad0 ( .. ) means partial differentiation with respect to the reference position Xa and 

grad ( .. )a defines the partial differentiation related to the actual position x. 
By the use of the TPM for an immiscible mixture of constituents r.p0

, each constituent can 

be described by an individual balance equation taking into account the necessary interactions 

between all constituents. The mixture equations are then described as the sum of the balance 

equations of all constituents and a constraint condition related to the interactions. 
Because the body does not know, whether it is a mixture or not, the mixture balance equation 

must have the same form as the respective balance equations of a single body. So the properties 
of the mixture follow from the properties of the constituents without any additional assumption: 

balance equation local form mixture constraint 

mass: (p0)~ + p0 div :fco = fP I: fP = 0 
o=S,F 

11 

momentum: poXa = div To + pobo + po I: (p0 + {P:fca) = 0 
o=S,F 

In these equations ( .. )~ denotes the material time derivative following the motion of the con­
stituent r.p0 , jP is the mass exchange (here: no mass exchanges are assumed: fP = 0), T 0 is 
the partial Cauchy stress tensor, b 0 is the body force density (here: b 8 = bF = b) and p 0 

represents the momentum production term of r.p0
• 

The response functions must be compatible with the second law of thermodynamics. Therefore 

the constitutive equations must reflect the restrictions imposed on the model by the dissipation 

principle. Only the main results from the procedure of deriving thermodynamical restrictions 
are given here. The reader who is interested in further details is referred to [1]. 

For the incompressible solid skeleton fully saturated by a compressible pore-fluid, the partial 

stress tensors as well as the interaction relation can be divided into a pressure depending and an 
extra part: 

where I is the second order identity tensor weighted by the effective fluid pressure p and the 

volume fraction n° of the related phase r.p0
, while T'E represents the extra stresses and p~ 

the extra part of the interaction force. These extra terms has to be specified by additional 

constitutive relations. Thus, it is assumed that the gas phase reacts like an ideal gas, the extra 
part of the interaction force is related to Darcy's law when being inserted in the fluid momentum 

balance, the fluid extra stresses are assumed to be negligible and only the considerations for the 
solid extra stresses has to be defined in relation to the free energy function '!jJ 8 of the solid phase. 

This can be summarised by 

T~~o, 

In the above equations flF is the specific gas constant, () the absolute temperature, kF is the 
Darcy permeability coefficient and IFR is the effective fluid weight. 
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2. Elasto-Piasticity 

Proceeding from the assumptions of an elasto-plastic solid material and geometrically non­
linear deformations, the general response of the solid skeleton stress is affected by the multi­
plicative decomposition of the deformation gradient F s = F seF Sp into an elastic and a plastic 
part. This implies the existence of only two proper spatial velocity gradients, namely Ls as the 
spatial velocity gradient and Lsp as the plastic velocity gradient, see [ 1]. Their symmetric parts 
D s characterises the solid deformation rate of the spatial configuration and f> Sp the purely plas­
tic deformation rate of the intermediate configuration (terms corresponding to the intermediate 
configuration are denoted by c.)). 
By the use of the concept of Lie derivatives (or Oldroyd derivatives, respectively) and some fur­
ther transformation conditions, an additively decomposition of the total strains results. Thus, a 
modified Neo-Hooke-modei defined by [2] and having been extended for finite elasto-plasticity 
by [3] is given to specify the solid skeleton extra stress, via: 

T~ = J-Ls(Bse- I)+ .\s(l- n%)2 (1 lse s- J lse s) I. 
- np Se- np 

Therein, r~ represents the extra Kirchhoff stress, f-Ls and As are the Lame constants with respect 
to the solid skeleton, Bs is the elastic part of the left Cauchy-Green strain tensors, lse is the 
Jacobian with respect to the elastic deformation, and ng is the plastic solid volume fraction with 
respect to the intermediate configuration. This formulation ensures that the point of compaction 
is correctly represented. 
The plasticity is described with respect to the intermediate configuration. The different postu­
lates and results of the plastic response can be transformed by use of the respective push-forward 
and pull-back transformations from the intermediate configuration towards the actual configu­
ration or the reference configuration, if required. 
As it is known from theories of constrained materials, only the extra stresses are allowed to 
enter the plastic response. Following this, a temperature independent general yield function for 
porous matrices can be introduced by a single surface yield condition [1], 

F(i, fin, IIIn, q, r) = A ( IIIn) 1 A A A A 2 W1Iln 1+rfi~2 m+2aJ2+(PI4 +'112,BI+c:I -K=O, 

where I is the first invariant, fin is the negative second deviatoric invariant and IIIn is the 
third deviatoric invariant of r~, q = (a, ,B, 1, J, c:, K, m) is the parameter vector representing 
the dependence on the deformation history in the isotropic hardening case, and r = ('111, 'l'2) 
includes the parameters representing the dependence on the actual deformation describing the 
structural hardening. 
The set of material parameters must be fitted to experimental results from triaxial and biaxial 
tests. As far as porous materials are concerned, a general non-associated flow rule must be 
introduced to govern the plastic rate of the deformation tensor :6 Sp depending on the plastic 
potential G and the proportional factor A: 

f> Sp = A 
0~ , G(I,fin, q, r) = '11 1 fin + -

2

1 
a I2 + 152 I4 + '112 ,B I+ c: j2 = 0. 

OTE 

For the numerical computations, the equation system resulting from the weak forms of the 
balance equations as well as the local plasticity equation system has to be solved, see [ 4]. 



302 

3. Example: Indentation test 

As an example of the usage of metal foams in real applications, a simple indentation test is 
presented. Herein, a part of an aluminium foam block is loaded by a rigid stamp, see sketch 
below. 
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After an indentation way of 50 percent of the specimen's height, the norm of the plastic strains 
are shown. At this state of deformation, some elements have reached the point of compaction 
and thus react like elements of single phase material in further loading. The high effective 
stresses are localised in the loaded region, especially at the edges of the indented area. Further­
more, the plastification of the foam material is also very local in this indented area which also 
can be observed by experiments. 
Further work is the specification of material parameters of different foam materials and the 
verification of numerical simulations with the corresponding experiments. 
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